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Single crystal X-ray structure analyses of 3-Hydroxyl-1,7,7-
trimethyl-3-[5-(4-methyl phenyl)-1,3,4-oxadiazol-2-yl]bicycle 
[2.2.1] heptan-2-one was performed. In addition, the 
computational investigations such as optimization energy, 
infrared spectra, the frontier orbitals of HOMO, LUMO, HOMO-1, 
and LUMO+1 analysis, molecular electrostatic potential plots, heat 
capacity, entropy, and charge distribution were performed on the 
products at DFT/B3LYP methods. The comparison between the 
experimental and theoretical results demonstrated that these two 
results are in good agreement. 
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Introduction 

Multicomponent reactions (MCRs) can be 

regarded as an effective and robust means in 

today’s synthetic organic chemistry; this is 

owing to the good qualities like atom economy 

and good reaction design, as well as the 

possibility of constructing target compounds 

by introducing a number of components in one 

single chemical incident [1]. Also, products 

purification resulted from MCR is usually not 

complicated as the whole organic reagents are 

applied and can be inserted into the targeted 

compound [2-4]. MCRs, resulting in notable 

heterocyclic scaffolds, are especially suitable 

for constructing varied “druglike” molecules 

chemical libraries. Isocyanide-based MCRs are 

particularly significant in such an area [5,6]. Of 

MCRs to date, the ones based on isocyanides 

are the most effective reactions. Isocyanide-

based multicomponent reactions (IMCRs) 

have been of much recent research interest 
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due to their interesting synthetic potential, 

implementation ease, and the possibility of 

molecular variety in the combinatorial 

chemistry field [7,8].  

Camphor and its derivatives are considered 

as one of the most widely used enantiopure 

building blocks, agents shift reagents in the 

NMR spectroscopy, and ligands in a wide 

range of asymmetric reagents as well as 

catalysts [9-11]. Camphorquinone, 6- 

oxocamphor, also known as 2,3-bornanedione 

is a photo initiator applied in curing dental 

composites [12]. (1R)-(–)-Campherchinon 

(Figure 1) is one of the camphor derivatives, 

which can be used as a chiral starting material 

for the preparation of diverse and different 

chiral organic compound [13,14]. Likewise, 

various camphor derivatives have been used 

in asymmetric hydrogenation reactions 

[15,16]. Moreover, some of the camphor 

derivatives demonstrate fascinating biological 

and pharmaceutical activities. By the way, 

camphorsulphonylbenzimidazoles contain an 

anti-bacterial [17], and anti-spasmodic effect 

has been applied in the pharmaceutical field 

[18].

 
FIGURE 1 Molecular structure of (1R)-(–)-Campherchinon 

Over past years, the substantial research 

has been carried out on various types of 

oxadiazoles. Especially, organic compounds 

including 1,3,4-oxadiazole base have been 

demonstrated to have a vast array of 

pharmacological and therapeutic activities. A 

group of 1,3,4-oxadiazoles have revealed 

myorelaxant, painkiller, hypotensive, and 

antiemetic activities [19-21]. A suitable 

procedure has been previously reported for 

the synthesis of 1,3,4-oxadiazoles [22,23].  

Theoretical chemistry is a part of chemistry 

with the simulation of molecules and atoms 

which can help researchers to find better 

chemical structures. It assists the 

experimental chemists to predict molecular 

structure [24], identify the correlation 

between the chemical structures and 

molecular properties [25],  to find the 

chemical approaches for synthesis of organic 

and inorganic compounds [26], drug design 

[27], etc. Hartree-Fock calculation 

(abbreviated as HF) is a common kind of ab 

initio method. In HF methods, the central field 

approximation is the early approximation. By 

definition, the coulombic electron-electron 

excretion is inverted by integrating the 

repulsion period. A strong method leading to 

the quantum chemistry for the prediction of 

the electron structure of molecules is Density 

functional theory (DFT). The DFT methods are 

being more and more useful. The results 

deduced by DFT methods are comparable to 

the results presented by ab initio methods. 

The most popular of DFT model is B3LYP [5]. 

Due to our interest in the synthesis of 

heterocycle compounds [28,29],  single crystal 

X-ray structure [30-32]  and computational 

chemistry as DFT studies [33-39], in the 

current study, we reported a theoretical 

investigation, and compared it with the 

experimental analysis such as FT-IR spectra, 

the frontier orbitals of HOMO, LUMO, HOMO-

1, and LUMO+1 analysis, heat capacity, 

entropy, charge distribution and molecular 

electrostatic plots in association with the 

compound mentioned earlier. 

Experimental 

The 3-hydroxyl-1,7,7-trimethyl-3-[5–(4-

methylphenyl)–1,3,4-oxadiazol–2–
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yl]bicyclo[2.2.1]heptan-2-one (1A) was 

obtained using the procedure described in a 

previous study [40]. The molecular structure 

of 1A was displayed in Figure 2. Colorless 

single crystals were grown by gradual 

vaporization of its petroleum ether/methanol 

(1:1) solution. The colorless single crystals 

were filtered, washed with a cold mixture of 

petroleum ether/methanol (1:1) and dried at 

room temperature.

 
FUGURE 2 Molecular structure of 1A 

Single crystal X-ray diffraction of 1A 

We measured the crystallographic 

measurement on an Xcalibur R κ-geometry 

automated four-circle diffractometer 

accompanied by a CCD camera Ruby and 

graphite-monochromatized MoKα radiation (λ 

= 0.71073 Å). The data collection was 

conducted at 80(2) K using the Oxford-

Cryosystems cooler. Data were corrected for 

Lorentz and polarization impacts. Xcalibur R 

software, CrysAlisPro was applied to gather 

the data, refine cell, reduce, and analyze the 

data [41]. Using direct methods with the 

SHELXS97 program, we solved the structure 

[42], refined it by a full-matrix least-squares 

technique with SHELXL2013 [42], and 

considered anisotropic thermal parameters 

for non-H atoms. The whole H atoms were 

detected in various Fourier maps and refined 

isotropically. As for the final refinement 

stages, the C-bonded H atoms experienced 

repositioning in their computed positions and 

were refined applying a riding model, with C–

H = 0.95–1.00 Å, and Uiso(H) = 1.2Ueq(C) for 

CH and CH2, as well as 1.5Ueq(C) for CH3. 

Hydroxyl H atom was refined without 

restriction. DIAMOND program was utilized to 

make figures [43]. Details of the conditions for 

the data collection and structures refinements 

are given in the crystallographic information 

file (CIF) deposited with The Cambridge 

Crystallographic Data Centre 

(www.ccdc.cam.ac.uk/; deposition number 

CCDC-2089303) and provided as ancillary 

data. 

Crystal data 

C19H22N2O3, Mr = 326.38, colorless block, 

crystal size 0.44 × 0.43 × 0.41 mm, trigonal, 

space group P32, a = 11.050(3), c = 12.319(3) 

Å, V = 1302.7(8) Å3,T = 80(2) K, Z = 3, μ = 0.09 

mm−1 (for Mo Kα, λ = 0.71073 Å), the empirical 

absorption correction (multi-can), Tmin = 

0.990, Tmax = 1.000, 10018 reflections 

measured, 5223 unique (Rint = 0.020), 5025 

observed (I > 2σ(I)), (sin θ/λ)max = 0.746 Å−1, 

225 parameters, 1 restraint, R = 0.035 

(observed refl.), wR = 0.091 (all refl.), GOOF = 

S = 1.03, (Δρmax) = 0.35, and (Δρmin) = −0.25 e 

Å−3. Absolute configuration was known. 

Computational details  

The theoretical study was calculated using the 

Gaussian 09W software package [44]. The DFT 

method get the Becke3 exchange functional 

completed with Lee, Yang, Parr (LYP) 

correlation functional [45,46]. The geometry 

optimizations were achieved by HF and 

DFT/B3LYP methods as well as 6-31G, 6-

311G* basis sets, respectively, to take the 

closest structure. The wavenumbers were 

calculated at B3LYP/6-311G*. It was indicated 

by specializing part of Gauss View 6.0 software 

which reveals the FT-IR spectrum of the 

vibration models [47]. The molecular 

http://www.ccdc.cam.ac.uk/
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geometries were fully optimized and shown at 

B3LYP/6-311G*. 

Results and discussion 

To develop powerful methods for providing 

heterocyclic compounds included in our 

ongoing program, the synthesis of 1,3,4-

oxadiazoles by a three-component 

condensation of (N-

isocyanimino)triphenylphosphorane, 4-

methylbenzoic acid, and (1R)-(-)-

campherchinon was tested.  The FT-IR, 1H 

NMR, and 13C NMR spectroscopy was used to 

confirm  the product’s structure [40]. 

The molecular structure of 1A was 

optimized using B3LYP/6-311G* (Figure 3). 

The energy of optimization, frontier orbitals of 

HOMO, LUMO, HOMO-1, LUMO+1, and energy 

gap were obtained within B3LYP/6-311G* as 

displayed in Table 1.

 
FIGURE 3 The molecular structure of 1A optimized using B3LYP/6-311G (d,p)

The FT-IR spectrum of the molecule 1A was 

obtained by B3LYP/6-311G* method and 

basis set. The FT-IR diagrams of compound 1A 

were designed by animation option of Gauss 

view 6.0 software, as illustrated in Figure 4. 

The comparison between the experimental 

[40] and theoretical FT-IR spectra results 

demonstrate that these two results are in good 

agreement.

 
FIGURE 4 The computational FT-IR spectrum for 1A calculated by B3LYP/6-311G*

Frontier high occupied molecular orbital 

(HOMO) and low unoccupied molecular 

orbital (LUMO) of 1A plotted in 3D by 

B3LYP/6-311G* method and basis sets are 

displayed in Figure 5. Optimization energy, 

heat capacity, entropy, HOMO, LUMO, HOMO-

1, LUMO+1, and the energy gap for compound 

1A are depicted in Table 1. With a vector in 

three dimensions, the dipole moment can be 

revealed by molecular charge distribution. 

Thus, it can be suitable as an  explanator to 

determine the movement of electric charges 

throughout the molecules [48]. The 

nucleophilicity and electrophilicity properties, 

dipole moments, and the molecules 

interactions with each other can be predicted 
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by charge distribution in the molecules. The 

molecular electrostatic potential (MEP), 

electron density surface plots (ESP), and the 

molecular charge distributions on the surface 

of the compound 1A calculated at B3LYP/6-

311G* method and basis set are depicted in 

Figure 5.  According to Figure 6, the oxadiazole 

ring, carbonyl, and hydroxyl groups are 

negative (-) regions (red area), and methyl 

group and phenyl ring are positive (+) regions 

(green area). The Mullikan charge distribution 

plots of compound 1A calculated by B3LYP/ 6-

311G* are shown in Figure 7, confirming the 

obtained results by MEP and ESP contour 

plots.

 
FIGURE 5 The 3D plot of frontier HOMO and LUMO orbitals of 1A using B3LYP/6-311G* method 

and basis sets 

TABLE 1 Some molecular orbital properties and optimization energy for 1A calculated by 

B3LYP/6-311G* 

E 

(Thermal) 

KCal/Mol 

CV 

Cal/Mol-

Kelvin 

S 

Cal/Mol-

Kelvin 

HOMO 
HOMO-

1 
LUMO LUMO+1 GAP 

GAP 

+1,-1 

251.725 84.677 152.322 
-

0.24237 

-

0.25376 

-

0.05715 
-0.03579 

-

0.18522 

-

0.21797 

 

 
FIGURE 6 ESP, Contour total density, and MEP of the compound 1A shown as charge distributions 

on the surface, calculated at B3LYP/6-311G* method and basis set 
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FIGURE 7 The Mullikan charge distribution plots of compound 1A calculated by B3LYP/ 6-311G* 

X-ray crystal structure 

The molecular structure of 1A was 

determined with the use of X-ray 

crystallography (Figure 8). The compound 

crystallizes in the chiral trigonal P32 space 

group. As indicated in Table 2, (4-

methylphenyl)–1,3,4-oxadiazole fragment of 

the molecule is almost planar, with the p-tolyl 

being only slightly twisted relative to the 

oxadiazole ring (C14—C13—C12—O1 torsion 

angle of 18.8(2)). To this planar part, bicyclic 

camphor moiety is linked via the chiral atom 

C3 (absolute configuration S). The C3-bound 

OH group is an acceptor of weak 

intramolecular C–H···O contact (Figure 8), and 

a donor of intermolecular N–H···O hydrogen 

bond (Table 3). As a result of the latter 

interactions between molecules resulting 

from the action of threefold screw axis 32, 

helical chains (running down the c-axis) are 

shaped in the crystal of 1A (Figure 9).

 
FIGURE 8 X-Ray structure of 1A, indicating the atom-numbering scheme and the intramolecular 

C–H·· O hydrogen bond (light orange dashed line). Displacement ellipsoids are drawn at the 50 % 

probability level 

 
FIGURE 9 Helical chain (side and top view), running down the c-axis, built up from molecules of 

1A joined via intermolecular N–H···O hydrogen bonds (blue dashed lines). Symmetry code (i) 

−x+y, −x, z+1/3 
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TABLE 2 Selected geometric parameters (Å, º) for 1A 

O1—C11 1.3622(17) 

O1—C12 1.3643(17) 

N1—N2 1.4149(18) 

N1—C11 1.2882(19) 

N2—C12 1.2990(19) 

C11—O1—C12 102.75(11) 

C11—N1—N2 105.81(12) 

C12—N2—N1 106.27(12) 

O3—C3—C11—O1 −51.18(16) 

C2—C3—C11—O1 −173.48(12) 

C4—C3—C11—O1 74.24(16) 

C14—C13—C12—O1 18.8(2) 

 

TABLE 3 Geometry of hydrogen bonds (Å, º) in 1A 

D—H···A D—H H···A D···A D—H···A 

O3—H3···N2i 0.89(3) 2.02(3) 2.8701(18) 159(3) 

C6—H6B···O2ii 0.99 2.21 3.192(2) 172 

C8—H8B···O3 0.98 2.32 2.950(2) 121 

Symmetry codes: (i) −x+y, −x, z+1/3; (ii) −y+1, x−y+1, z−1/3 

Conclusion 

In this study, DFT calculation analysis and 

comparison between theoretical and 

experimental for 1A were obtained. The 

frontier orbitals of HOMO and LUMO, 

thermodynamic properties, charge 

distribution, spectroscopic FT-IR, ESP, and 

MEP studies were carried out using B3LYP 

methods and 6-311G(d,p) basis set. According 

to the ESP and MEP plots illustrated that 

oxadiazole ring and carbonyl/hydroxyl group 

are negative (-) region (red area) and methyl 

group and phenyl ring are positive (+) region 

(green area). Based on the results, the 

molecular geometry parameter represents a 

good agreement with the experimental 

results. 
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