ECC

Eurasian Chemical Communications

Original Research Article

http://echemcom.com

 H_2O_2 as a green and environmentally benign reagent for the oxidation of sulfides in the presence of {[K.18-Crown-6]X₃}_n (X= Br, I) compared with some other organic tribromides

Mohsen Rasouli^a, Mohammad Ali Zolfigol^b, Mohammad Hossien Moslemin^a, Razieh Mohebat^a, Gholamabbas Chehardoli^{c,d,*}

^aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran

^bFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

^cMedicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

^dDepartment of medicinal chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran

Received: 13 October 2019, Accepted: 02 November 2019, Published: 23 November 2019

Abstract

In the presence of $\{[K.18-Crown-6]X_3\}_n$ (X= Br, I)-as interesting trihalide reagents, organic sulfides were oxidized to their corresponding sulfoxides using H₂O₂ as a green reagent. $\{[K.18-Crown-6]X_3\}_n$ activates H₂O₂ *via* in situ generation of HOX and variously substituted sulfides were selectively transformed into the corresponding sulfoxides. We compared the obtained results of $\{[K.18-Crown-6]X_3\}_n$ with some other organic tribromides. Unexpectedly, in most cases, the results were similar.

Keywords: H_2O_2 ; {K.18-Crown-6]Br₃_n; {K.18-Crown-6]I₃_n; oxidation; sulfides; sulfoxides.

Introduction

A sulfoxide is a chemical substance containing a sulfinyl (S=O) functional group bound to two carbon atoms. S=O is a polar functional group. Sulfoxides are the oxidized derivatives of sulfides [1]. One of the important sulfoxides is alliin, a precursor to the compound that gives freshly chopped or crushed garlic its aroma [2], and DMSO with the formula (CH₃)₂SO, an important polar aprotic solvent. Organic sulfoxides are useful synthetic substrates for the preparation of various chemically and biologically active structures [3]. They an important role as often play factors therapeutic such as antiatherosclerotic, anti-ulcer, antibacterial, antihypertensive, antifungal, and cardiotonic agents, as well as vasodilators and psychotonics [4].

Due to the importance of sulfoxides in synthetic organic reactions and biological chemistry, the oxidation of sulfides to their corresponding sulfoxides is important compared to some other organic reactions [5].

*Corresponding author: Gholamabbas Chehardoli Tel: +98 (81) 38381674, Fax: +98 (81) 38380031 E-mail: chehardoli@umsha.ac.ir

Eurasian Chem. Commun., (2020) 44-50

Generally, oxidation reactions need stoichiometric amounts of toxic reagent/catalyst. Removal of the trace reagent from the reaction mixture is usually expensive and difficult. Thus, green protocols [6], in oxidation reactions using cheap green oxidants such as oxygen [7] or hydrogen (H_2O_2) have peroxide become increasingly popular [8].

Application of organic trihalide (Br₃⁻ and I_3^-) as reagents/catalysts are preferable to molecular bromine/iodine because of the high toxicity of these elements. Usage of organic tribromide reagents (OTBs) is very common. Some of these reagents include hexamethonium bis(tribromide) [9], poly (4-vinylpyridinium tribromide) [10], and tribromide ion immobilized on magnetic nanoparticle [11]. Unlike the abundance of tribromide reagents, only one organic triiodide reagent has been reported so far. We reported $\{[K.18-crown-6]Br_3\}_n$ [12] and $\{[K.18 \operatorname{crown-6}[I_3]_n$ [13] as a particular trihalide structure (Figure 1). We have these compounds to applied the bromination of aromatic rings. conversion of thiols to disulfides, protection of amines, and alcohols [12-Recently, reported 14]. we the oxidation of alcohols and protected alcohols using H₂O₂ in the presence of $\{[K.18-crown-6]Br_3\}_n [15].$

Figure 1. Crystal's colors of $\{[K.18-crown-6]Br_3\}_n$ and $\{[K.18-crown-6]I_3\}_n$

Previously, we have studied the application of organic trihalides as reagent/catalyst [14,16] and also H₂O₂ and its derivatives such as UHP [17], melamine-H₂O₂ [18], and PVP-H₂O₂ [19] in organic functional groups transformations. Consequently, this study aimed to evaluate the effect of $\{[K.18-crown-6]Br_3\}_n$ and $\{[K.18-crown-6]I_3\}_n$ as two unique trihalide reagents for the oxidation of sulfides to sulfoxides in the presence of H₂O₂.

Experimental

General

Chemicals were purchased from Merck, Fluka and Sigma-Aldrich companies. Products were characterized by comparison of their spectral (IR, ¹H-NMR and ¹³C-NMR) with those of known samples. Preparation of {[K.18 $crown-6]Br_3\}_n$, {[K.18- $crown-6]I_3\}_n$ and their recycling processes were performed according to our previously reported procedure [12,13].

General procedure for the oxidation of sulfides to sulfoxides

 H_2O_2 30% (1.1 mmol) was added to a solution of sulfides (1 mmol) and {[K.18-crown-6]X₃}_n (2 mmol) in CH₃CN (8 mL). The solution was stirred at reflux for the appropriate time (Table 2). The progress of the reaction was monitored by TLC. After the completion of the reaction, CH₃CN was removed by water-bath distillation. Column chromatography on a short pad of silica gel with CH₃CN afforded pure products in good to excellent yields. {[K.18-Crown-6]X₃}_n can regenerate (70%) *via* adding the ethanolic solution of X_2 to the residue of the reaction and recrystallization in acetonitrile.

Results and discussion

In this study, we report that $\{[K.18-crown-6]X_3\}_n$ acts as efficient reagents for the oxidation of sulfides to sulfoxides. Control experiments were

done optimize the reaction to conditions. First, oxidation of dibenzyl sulfide was used as a model reaction. This reaction was carried out in the presence of different amounts of $\{[K.18-crown-6]X_3\}_n,\$ H_2O_2 and different solvents. The optimized reaction conditions were 2 mmol of $\{[K.18-crown-6]X_3\}_n, 1.1 mmol H_2O_2$ and CH₃CN as the best solvent (Table 1).

 Table 1. Optimization of the reaction condition for the oxidation of dibenzyl sulfide in the presence of {[K.18-crown-6]X₃}_n, H₂O₂ and diversity of solvents

Entry	{[K.18-crown-6]X ₃ } _n (mmol)	H2O2 (mmol)	Solvent (8 mL)	Temperat ure (°C)	Time (min.)	Isolated Yield (%)
1	2			25	30	Sluggish
2	2		CH ₃ CN	Reflux	50	Sluggish
3	1	1.1	CH ₃ CN	25	30	45
4	1.5	1.1	CH ₃ CN	Reflux	30	60
5	2	1	CH ₃ CN	Reflux	30	65
6	2	1.1	CH ₃ CN	Reflux	30	81
7	2	1.1	CHCl ₃	Reflux	45	55
8	2	1.1	EtOAc	Reflux	45	67
9	2	1.1	THF	Reflux	45	71
10	2	1.1	<i>n</i> -hexane	Reflux	45	44

Secondly, we converted a range of sulfides to their corresponding sulfoxides under optimized reaction conditions without any generation of sulfones as the by-product (Scheme 1 and Table 2).

$$R^{S_{R}} \xrightarrow{R^{S_{R}}} H_{2}O_{2}, CH_{3}CN \xrightarrow{O}_{R^{S_{R}}} R^{S_{R}} + R^{S_{R}} \xrightarrow{O}_{N^{S_{R}}} R^{S_{R}}$$

Scheme 1. Oxidation of sulfides to sulfoxides using H_2O_2 in the presence of $\{[K.18-Crown-6]X_3\}_n \ (X=Br, I)$

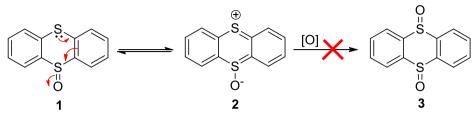
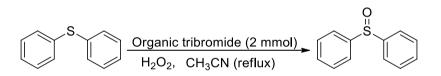

${[K.18-Crown-6]X_3}_n$ (X= Br, I)						
		${[K.18-Crown-6]Br_3}_n$		${[K.18-Crown-6]I_3}_n$		
Entry	Substrate	Time	Isolated	Time	Isolated	
		(min.) ^a	Yield (%)	(min.) ^a	Yield (%)	
1	S C	35	80	30	88	
2	S S	35	90	40	78	
3	S S	40	88	35	85	
4	S S	40	78	35	75	
5	CH3	40	83	30	74	
6	S	35	74	30	69	
7	С С СН	35	70	45	83	
8	∕ ^s ∕∕oh	35	66	30	73	
9	C ₄ H ₉ ^S C ₄ H ₉	25	75	25	70	
10	S OCH ₃	35	77	30	81	
11	∕ ^S ∕∕µ O	28	83	40	85	
12	S_S	30	81	35	73	
13	S	25	76	30	80	
14	reflux of CH-CN	30	67	35	75	

Table 2. Oxidation of sulfides to sulfoxides using H_2O_2 in the presence of
$\{[K.18-Crown-6]X_3\}_n (X=Br, I)$

^aUnder the reflux of CH₃CN

Homoselectivity in the oxidation of thianthrene


Previously, we introduced "homoselectivity" in the oxidation of thianthrene. When the thianthrene exposes to the oxidation condition (Table 2, Entry 4), selective monosulfoxidation takes place and further oxidation to disulfoxidation does not happen. We named this phenomenon "homoselectivity" [18]. We think that disulfoxidation does not occur because lone pair electron of the second sulfur participates in resonance with the primary sulfoxide group (Scheme 2).

Scheme 2. Homoselectivity in the monooxidation of thiantherene

Effect of crown ether on the reaction acceleration

As we know, crown ethers are phase transfer catalysts [20], and we expect this catalyst to promote the reaction better than some other organic tribromides. Therefore, we applied some other reported organic tribromide i.e. Dabco-bromine [21], HMTAbromine [22] and 1,1'-(Ethane-1,2divl)dipyridinium bistribromide (EDPBT) [23] for the oxidation of diphenyl sulfide under the reaction conditions and then comparison of their {[K.18-Crown-6]Br₃}_n. results with Unexpectedly, there was no distinguished difference between the results of these tribromides and {[K.18-Crown-6]Br₃]_n in terms of yields or reaction time (Scheme 3, Table 3).

Scheme 3. Oxidation of diphenyl sulfide using H₂O₂ in the presence of some organic tribromides

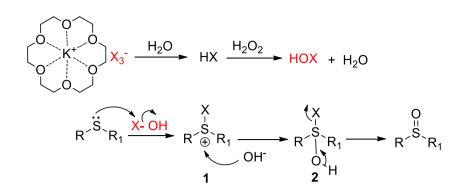

Entry	Organic tribromide	Time (min.)	Isolated Yield (%)	References
1	${[K.18-Crown-6]Br_3}_n$	35	80	This work
2	Dabco-bromine	35	83	[21]
3 4	HMTA-Bromine EDPBT	40 40	81 78	[22] [23]

Table 3. Comparison of the results of some other organic tribromides with $\{[K.18-Crown-6]Br_3\}_n$ in the oxidation of diphenyl sulfide using H_2O_2

Proposed mechanism

According to previously reported paper [24] and our obtained results, we propose that the mechanism for the oxidation of sulfides using H_2O_2 in the presence of {[K.18-Crown-6]X₃}_n can proceed by the in-situ formation of

HOX that causes this oxidation. Lone pair electron of sulfur attacks to X to form 1 and then OH^{-} bonds to 1 to form 2. H₂O removing from 2 produces the sulfoxide (Scheme 4).

Scheme 4. Suggested mechanism for the oxidation of sulfides to sulfoxides using H_2O_2 in the presence of $\{[K.18-Crown-6]X_3\}_n$

Conclusion

In summary, we explained the oxidation of sulfides to sulfoxides using H₂O₂ in the presence of {[K.18-Crown-6]X₃]_n. This protocol features good substrate scope, and excellent functional group compatibility, which holds promise for its convenient application preparation in the of sulfoxides generation without of sulfones as the by-product. The reaction is carried out at reflux conditions and yields of products are moderate to good. We compared the obtained results of $\{[K.18-Crown-6]X_3\}_n$ with some other organic tribromides. Unexpectedly, in most cases, the results were similar.

Acknowledgments

The authors acknowledge partial support for this work from the research affairs of Hamadan University of Medical Sciences, Hamadan, I.R.IRAN.

References

S. Sajjadifar, S. Rezayati, Z. Arzehgar, S. Abbaspour, M.T. Jafroudi, *J. Chin. Chem. Soc.*, **2018**, *65*, 960-969.
 B. Iberl, G. Winkler, B. Müller, K. Knobloch, *Plant. Med.*, **1990**, *56*, 320-326.

[3] A. Mirzaie, J. Medic. Chem. Sci., **2018**, 1, 5-8.

[4] K. Kaczorowska, Z. Kolarska, K. Mitka, P. Kowalski, *Tetrahedron*, **2005**, *61*, 8315-8327.

[5] S. Gholamyan, R. Khoshnavazi, A. Rostami, L. Bahrami, *Catal. Lett.*, **2017**, *147*, 71-81.

[6] A. Maleki, *Ultras. Sonochem.*, **2018**, *40*, 460-464.

[7] A. Maleki, T. Kari, *Catal. Lett.*, **2018**, *148*, 2929-2934.

[8] J.M. Campos-Martin,G. Blanco-Brieva, J.L. Fierro, *Angew. Chem. Int. Edit.*, **2006**, *45*, 6962-6984.

[9] B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, B.K. Patel, *Tetrahedron Lett.*, **2015**, *56*, 5646-5650.

[10] A. Ghorbani-Choghamarani, L. Shiri, G. Azadi, N. Pourbahar, *Res. Chem. Intermed.*, **2015**, *41*, 4997-5005.

[11] M. Hajjami, F. Gholamian, *RSC Adv.*, **2016**, *6*, 87950-87960.

[12] M.A. Zolfigol, G. Chehardoli, S. Salehzadeh, H. Adams, M.D. Ward, *Tetrahedron Lett.*, **2007**, *48*, 7969-7973.

[13] M. Zolfigol, E. Kolvari, N. Koukabi, S. Salehzadeh, G. Chehardoli,
I. Tidmarsh, K. Niknam, *J. Iran. Chem. Soc.*, **2011**, *8*, 484-494.

[14] G. Chehardoli, M.A. Zolfigol, F. Derakhshanpanah, *Chin. J. Catal.*, **2013**, *34*, 1730-1733.

[15] M. Rasouli, M.A. Zolfigol, M.H. Moslemin, G. Chehardoli, Green Chem. Lett. Rev., 2017, 10, 117-120. [16] (a) G. Chehardoli, M.A. Zolfigol, V. Khakyzadeh, H. Gholami, K. Niknam, S. Afri. J. Chem., 2011, 64, 127-131, (a) G. Chehardoli, M.A. Zolfigol, V. Khakyzadeh, R. Golbedaghi, N.A. Hall. A.G. Blackman, J. Chin. Chem. Soc., 2011, 58, 538-543. [17] A. Hasaninejad, M.A. Zolfigol, G. Chehardoli, M. Mokhlesi, J. Serb. Chem. Soci., 2010, 75, 307-316. [18] G. Chehardoli, M.A. Zolfigol, Phosphorus, Sulfur, 2009, 185, 193-203.

[19] M.A. Zolfigol, G. Chehardoli, M. Shiri, *React. Func. Polym.*, **2007**, *67*, 723-727.

[20] T. Nemcsok, Z. Rapi, G. Keglevich, A. Grün, P. Bakó, *Chirality*, **2017**, *30*, 407-419.

[21] M.A. Zolfigol, G. Chehardoli, E. Ghaemi, E. Madrakian, R. Zare, T. Azadbakht, K. Niknam, S. Mallakpour, *Monatsh. Chem.*, **2008**, *139*, 261-265.

[22] K. Khosravi, S. Kazemi, *Chin. Chem. Lett.*, **2012**, *23*, 61-64.

[23] G. Chehardoli, M.A. Zolfigol, T. Azadbakht, *Iran. J. Catal.* **2011**, *1*, 31-36.

[24] G. Joshi, R.D. Patil, S. Adimurthy, *RSC Adv.*, **2012**, *2*, 2235-2239.

How to cite this manuscript: Mohsen Rasouli, Mohammad Ali Zolfigol, Mohammad Hossien Moslemin, Razieh Mohebat, Gholamabbas Chehardoli. H_2O_2 as a green and environmentally benign reagent for the oxidation of sulfides in the presence of {[K.18-Crown-6]X₃}n (X= Br, I) compared with some other organic tribromides. *Eurasian Chemical Communications*, 2020, 2(1), 44-50.